The Infrapatellar Fat Pad and Plica: Gross Anatomy, and Histology Suggesting that the Infrapatellar Plica Functions as an Intra-articular Ligament: A Preliminary Report

Thomas V. Smallman, MD; Kris Shekitka, MD; Amos Race, PhD; Scott EKroth, MD

1Department of Orthopaedic Surgery, SUNY Upstate Medical University, Syracuse, NY; 2Department of Pathology, St. Agnes Hospital, Baltimore, MD

Purpose

This study seeks to demonstrate the gross anatomy and histology of the infrapatellar fat pad (FP) and infrapatellar plica (IPP) with a view to emphasizing that they are part of a structural and biomechanical continuum one function of which is to transmit force. The histology of these structures has not been reported in the orthopaedic literature.

Background

Anatomy: The FP and IPP are viewed in isolation with respect to the rest of the synovial membrane in standard texts and in the arthroscopic literature (Figures 1 and 2). Gallagher provided a complete review of the gross anatomy of the FP (Gallagher, J. 2005) the study was deficient in that no specimens were without an IPP, and there was no histology performed.

The typical descriptions of the IPP would be as follows: it is a synovial fold that originates from the inter-condylar notch of the femur, runs parallel to and above the anterior cruciate ligament, and attaches to the infrapatellar fat pad. (Boy, C.R. 2005; Kim, S.J. 1996; Hardaker, W.T. 1980). These descriptions suggest that the IPP ends at the FP. They do not take into account historic anatomic descriptions: “…On either side of the patella, the synovial membrane extends beneath the aponeuroses of the Vasti, and more especially beneath that of the Vastus medialis. Below the patella it is separated from the ligamentum patellae by a considerable quantity of fat, known as the infrapatellar fat pad. From the medial and lateral borders of the articular surface of the patella, reduplications of the synovial membrane project into the interior of the joint. These form two fringe-like folds termed the alar folds; below, these folds converge and are continued as a single band, the patellar fold (ligamentum mucosum) to the front of the inter-condylar fossa of the femur…” (Gray, H. 2005) The ligamentum mucosum is the IPP.

Anatomical Summary: Inherent in this historical description is the implication that synovial membrane is continuous from the undersurface of the vasti to the distal femur, and distally. In one figure and two in the IPP is shown in figure 2 to end in the FP.

Histology: Fat Pad – No overview in the current literature.

Infrapatellar Plica – In 1978 Wachtler (10 Wachtler, F. 1979) described the histology of the IPP, but did not show it. His view of the IPP – an embryological remnant of a septum separating the medial and lateral femoral-condylar compartments of no mechanical importance. The IPP is considered not by clinical importance (Baker, W.T. 1980; Kim, S.J. 2002; Dyer, K.J. 1988). Other authors (1 Boyd, C.R. 2005; 2 Demirag, B. 2006) have noted that arthroscopic release of the IPP successfully (in 90%) relieves anterior knee pain.

Histological Summary: There is an absence of data on the histology of the FP and IPP. As structure and function are irrevocably linked in biology, the objective of this study was to review this basic anatomical and histological information and determine the potential biomechanical function of these structures.

Method

Twelve fresh-frozen cadaver knees (8 with IPPs and 4 without) were dissected, lifting the extensor apparatus from the femur and reflecting it 180°. Synovial relationships were examined, recorded, and compared to historical descriptions and current literature. Histological study of the FP and IPP was performed using hematoxylin and eosin, elastin, and trichrome stains.

Results: Gross Anatomy

Fat Pad without Infrapatellar plica (4): the 180° flip of the vasti shows the fibrous synovium bypassing the FP to the upper surface of the menisci; there is no constraint on the central body; no potential distortion of central body and FP other than compression and shear.

Fat Pad with IPP (8): The central body is constrained by attachment to notch. FP is crossed by fibrous synovial elements. These fibrous elements, termed alar folds, ramify over and through the FP and are continuous with the upper portion of the IPP medially and laterally. Inferiorly the lower portion of the IPP merges with fibrous synovium that is attached to the superior aspect of the menisci and the inter-meniscal ligament. Arthroscopic observation of the IPP shows that it demonstrates non-isometric behavior tightening as the knee approaches full extension and flexion. In the cadaver knees, traction on the vasti perturbus the FP and IPP.

Results: Histology

Histological Summary: Displays a transition zone between the dense fibrillar collagen of the plica, then a buffer of fibrillar cartilage, completing the attachment to bone similar to a ligament attachment site. The central plica is composed chiefly of dense regular connective tissue with focal fat interspersed between the fibrous tissue in some specimens. The FP – FP attachment is undulating lobules of fat with neurovascular bundles and loose fibrous connective tissue merging with the dense fibrous connective tissue of the IPP.

FP with IPP – Central body is constrained by attachment to notch. FP is crossed by fibrous synovial elements. These fibrous elements, termed alar folds, ramify over and through the FP and are continuous with the upper portion of the IPP medially and laterally. Inferiorly the lower portion of the IPP merges with fibrous synovium that is attached to the superior aspect of the menisci and the inter-meniscal ligament. Arthroscopic observation of the IPP shows that it demonstrates non-isometric behavior tightening as the knee approaches full extension and flexion. In the cadaver knees, traction on the vasti perturbs the FP and IPP.

Histological Summary: Displays a transition zone between the dense fibrillar collagen of the plica, then a buffer of fibrillar cartilage, completing the attachment to bone similar to a ligament attachment site. The central plica is composed chiefly of dense regular connective tissue with focal fat interspersed between the fibrous tissue in some specimens. The FP – FP attachment is undulating lobules of fat with neurovascular bundles and loose fibrous connective tissue merging with the dense fibrous connective tissue of the IPP.

Fat Pad: A semi-fluid, connective structure whose medial and lateral extensions perfectly match the femoral condyles. The fat is divided in lobules by fibroelastic septa; vessels and nerves follow the septa. Centrally, in the absence of an IPP, the central body conforms to the notch. This is the non-constrained FP. With an IPP present, the FP is captured by the attachment to the condyle. The IPP is non-isometric and stretches at the extremes of motion. In full extension the FP is held captive against the distal femur. We have shown in a separate IRB-approved study in volunteers undergoing arthroscopy, that a quadr set maneuver stretches the IPP and central body. Woff’s law applies to the capsule and force transmitting elements of the synovial layer. Force is thus constantly being transmitted through the synovial layer to the FP and IPP with every knee motion. One can expect a robust IPP in the athletic individuals.

Conclusion

Gross Anatomy: There is a wide variation in appearance of the FP. A 180° flip of the extensor apparatus allows the continuum of the synovial layer of the knee to be appreciated. The FP can be unconstrained (no IPP) in which case the linked fibrous elements bypass the FP to attach to the menisci and tibia. The semi-fluid FP mechanically conforms to the condyles as the knee moves. The constrained FP is crossed by fibrous elements arising from alar folds linked to the vasti. These fibrous elements are joined by a medial septal or plica 4 and are continuous with the IPP. Attached to the central body of the FP, the IPP holds the FP captive against the end of the menisci. Activation of the vasti perturbs the IPP and FP as they are linked structures.

Histology: This is the first report showing the entire structure of the IPP. It is a preliminary report because histological study was performed only on one FP without an IPP, and on 5 FP with IPPs. The IPP shows the structure of an intra-articular ligament: fibrillar cartilagenous transition at femoral insertion, dense connective tissue basic structure, specialized structural insertion to the FP with finger-like fibro-elastic connections wrapped around tortuous nerves and vessels. The basic structure of the IPP is a for a compressible pad of fibro-elastic septa, dividing lobules of fat with nerves and vessels following the septa.

References: Handout list available below.